Basics of Panel Data

Ian McCarthy | Emory University Workshop on Causal Inference with Panel Data \Diamond

Table of contents

- 1. What are Panel Data
- 2. Estimation
- 3. In Practice
- 4. Semantics

What are Panel Data?

Nature of the Data

• Repeated observations of the same units over time

Notation

- Unit $i=1,\ldots,N$ over several periods $t=1,\ldots,T$, which we denote y_{it}
- Treatment status D_{it}
- Regression model,

$$y_{it} = \delta D_{it} + u_i + \epsilon_{it}$$
 for $t = 1, \dots, T$ and $i = 1, \dots, N$

Benefits of Panel Data

- May overcome certain forms of omitted variable bias
- Allows for unobserved but time-invariant factor, u_i , that affects both treatment and outcomes

Still assumes

- No time-varying confounders
- Past outcomes do not directly affect current outcomes
- Past outcomes do not affect treatment (reverse causality)

Some textbook settings

- Unobserved "ability" when studying schooling and wages
- Unobserved "quality" when studying physicians or hospitals

Estimating Regressions with Panel Data

Regression model

$$y_{it} = \delta D_{it} + u_i + \epsilon_{it}$$
 for $t = 1, \dots, T$ and $i = 1, \dots, N$

Fixed Effects

$$y_{it} = \delta D_{it} + u_i + \epsilon_{it}$$
 for $t = 1, \dots, T$ and $i = 1, \dots, N$

- Allows correlation between u_i and D_{it}
- Physically estimate u_i in some cases via set of dummy variables
- More generally, "remove" u_i via:
 - "within" estimator
 - first-difference estimator

Within Estimator

$$y_{it} = \delta D_{it} + u_i + \epsilon_{it}$$
 for $t = 1, \dots, T$ and $i = 1, \dots, N$

- Most common approach (default in most statistical software)
- Equivalent to demeaned model,

$$y_{it}-{ar y}_i=\delta(D_{it}-{ar D}_i)+(u_i-{ar u}_i)+(\epsilon_{it}-{ar \epsilon}_i)$$

- $u_i ar{u}_i = 0$ since u_i is time-invariant
- Requires strict exogeneity assumption (error is uncorrelated with D_{it} for all time periods)

First-difference

$$y_{it} = \delta D_{it} + u_i + \epsilon_{it}$$
 for $t = 1, \dots, T$ and $i = 1, \dots, N$

- Instead of subtracting the mean, subtract the prior period values $y_{it}-y_{i,t-1}=\delta(D_{it}-D_{i,t-1})+(u_i-u_i)+(\epsilon_{it}-\epsilon_{i,t-1})$
- Requires exogeneity of ϵ_{it} and D_{it} only for time t and t-1 (weaker assumption than within estimator)
- Sometimes useful to estimate both FE and FD just as a check

Keep in mind...

- Discussion only applies to linear case or very specific nonlinear models
- Fixed effects can't solve reverse causality
- Fixed effects doesn't address unobserved, time-varying confounders
- Can't estimate effects on time-invariant variables
- May "absorb" a lot of the variation for variables that don't change much over time

Seeing things in action

Within Estimator (Default)

Stata

ssc install bcuse
bcuse wagepan
tsset nr year
xtreg lwage exper expersq, fe

R

Within Estimator (Manually Demean)

Stata

```
ssc install bcuse
bcuse wagepan
foreach x of varlist lwage exper expersq {
   egen mean_`x'=mean(`x')
   egen demean_`x'=`x'-mean_`x'
```

```
reg demean_lwage demean_exper demean_expersq
```

R

First differencing

Stata

ssc install bcuse
bcuse wagepan
reg d.lwage d.exper d.expersq, noconstant

R

```
library(readstata13)
wagepan ← read.dta13("http://fmwww.bc.edu/ec-p/data/woo
wagepan ← wagepan %>%
  group_by(nr) %>%
  arrange(year) %>%
  mutate(fd_lwage=lwage - lag(lwage),
      fd_exper=exper - lag(exper),
      fd_expersq=expersq - lag(expersq)) %>%
  na.omit()
summary(lm(fd_lwage~0 + fd_exper + fd_expersq, data=wage
```